
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 59:611–630
Published online 17 July 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1838

Weighted essential non-oscillatory schemes for tidal bore on
unstructured meshes

Changna Lu1,2, Jianxian Qiu3, ∗,† and Ruyun Wang1

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing, Jiangsu 210098, People’s Republic of China

2College of Ocean, Hohai University, Nanjing, Jiangsu 210098, People’s Republic of China
3Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China

SUMMARY

In this paper, the third-order weighted essential non-oscillatory (WENO) schemes are used to simulate
the two-dimensional shallow water equations with the source terms on unstructured meshes. The balance
of the flux and the source terms makes the shallow water equations fit to non-flat bottom questions.
The simulation of a tidal bore on an estuary with trumpet shape and Qiantang river is performed; the
results show that the schemes can be used to simulate the current flow accurately and catch the stronger
discontinuous in water wave, such as dam break and tidal bore effectively. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper, the weighted essential non-oscillatory (WENO) schemes are used to simulate the
tidal bore of the two-dimensional shallow water equations for Qiantang river on unstructured
triangle meshes.

There are many rivers that have tidal bore in the world, such as Amazon in South America, Seine
river in French, and so on. But the tidal bore in Qiantang river is greater and worth considering.
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Qiantang river lies in the south of Shanghai, China, which is very famous for high tidal bore.
Although tidal bore is one of the important reasons that make disaster to those regions along
Qiantang river about every five years, it damages the dykes and dams mainly. To efficiently control
the danger of the tidal bore and keep the sight, it is necessary to understand the process of tidal bore
more. Numerical simulation is an important way except the physical model, and the complexity
of the shape of the gulf and the topography of the bottom surface need numerical methods with
higher precision.

As we know, the performance of the shallow water equations without the source terms is similar
to that of the compressible Euler equations in aerodynamics. A lot of shock and discontinuity
capture methods that are well developed in aerodynamics can be used to solve the shallow water
equations, including the cases with strong discontinuity, such as tidal bore. In [1, 2] the finite
difference methods were adopted to solve the shallow water equations, and these methods were
based on rectangular meshes; they could not approximate the boundary accurately in bays and
estuaries that have complex geometries. In fact, the finite element methods [3] are convenient for
questions with complex geometries; however, in these methods the established algebraic equations
are non-linear and have to be solved by the iteration process. Moreover, the boundary conditions and
the mesh structures have a great influence on the numerical results. The finite volume methods are
widely used as they have the merits of the finite difference methods and the finite element methods.
In recent years, high-resolution finite volume methods for hyperbolic systems of conservation
laws have been extensively applied to solve the shallow water equations. In particular, the finite
volume methods of the Godunov class are quite mature and can be used in different practical
engineering applications. In most of the applications, second-order accuracy schemes were used, as
it is the optimal compromise between a reasonable mesh refinement and an acceptable complexity
of numerical schemes.

The WENO schemes are a very important class of high-accuracy numerical methods [4, 5].
The WENO is a procedure of spatial discretization, namely, it is a procedure to approximate the
spatial derivative terms. The WENO schemes use the idea of adaptive stencils in the reconstruction
procedure based on the local smoothness of the numerical solution to automatically achieve high-
order accuracy and a non-oscillatory property near discontinuities. The WENO methods have been
developed in recent years as a class of high-order methods for conservation laws, which give
sharp, non-oscillatory discontinuity transitions and at the same time provide high-order accurate
resolutions for the smooth part of the solution.

There are several papers that studied tidal bore, such as Su et al. [6] established a one-dimensional
model from Ganpu to Fuchun station, and a two-dimensional model covering the local area from
Ganpu to Yanguan station for Qiantang river. They simulated a tidal event and compared it with
the observed tidal elevations in Qiantang river, and they used a new non-oscillatory and non-
free dissipation parameter difference scheme to simulate the full process. Pan et al. [7] used
the Godunov-type schemes with the water level-bottom topography formulation to simulate the
formation, evolution and dissipation of the tidal bore in Qiantang river. Hui and Pan [8] established
a two-dimensional flexible meshes models for Qiantang river. Madsen et al. [9] developed an
implicit finite difference formulation of the shallow water equations to treat tidal bore and hydraulic
jumps. The accuracies of those schemes are not more than second order.

If the source terms are ignored, the systems of the shallow water equations are homogeneous.
However, the inclusion of the source terms, which differ from Euler equations, makes the model
more complex, the source terms relevant to bed topography, bed shear stress and Coriolis term.
Essentially, a numerical imbalance is created by the artificial splitting to generate a mathematical
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hyperbolic formulation. These terms are evaluated by different methods at different locations within
the computational meshes creating numerical imbalance. Many numerical solvers of the shallow
water equations give unphysical results for flow over physically realistic variable bathymetry,
solely because of this mathematically convenient splitting. The study for solving the full shallow
water equations receives attentions continuously. Recently, various researchers have developed
new methods for the shallow water equations with the source terms. For example, LeVeque [10]
developed a treatment for the bed slope source terms, which balanced the source terms and the flux
gradients, but the method for quasi-steady problems is reported to be less successful when applied
to calculate steady flow with a shock. Hubbard and Garcia-Navarro [11] used numerical upwind
of the source terms to achieve equilibrium between the flux gradient and the source terms in the
shallow water equations with higher-order total variation diminishing (TVD) schemes. Meanwhile,
Zhou et al. [12] suggested an alternative piecewise linear reconstruction of the surface gradient
term in the shallow water equations, which was demonstrated using an HLL Riemann solver.

In this paper, the third-order WENO schemes are used to solve the tidal bore of the two-
dimensional shallow water equations with the source terms on unstructured triangle meshes. We
follow the ideas of Hu and Shu [13] about the WENO schemes and Rogers et al. [14] about the
balance of the flux and the source terms. We consider the case of flow over wet non-flat bed. This
paper is organized as follows. In Section 2, we describe the property and discretization of the
shallow water equations by the third-order WENO schemes. Numerical examples and applications
are given to demonstrate the accuracy and the resolution of the constructed schemes in Section 3.
Concluding remarks are included in Section 4.

2. DESCRIPTION OF NUMERICAL MODEL AND NUMERICAL METHOD

2.1. The governing equations

The two-dimensional conservative unsteady shallow water equations are

Ut +F(U )x +G(U )y =H (1)

with

U =[D,uD,vD]T, F(U )=[uD,u2D+gD2/2,uvD]T, G(U )=[vD,uvD,v2D+gD2/2]T

and the source terms

H =[0,Df v−gDSox +(�ax −�bx )/�,−Df u−gDSoy+(�ay−�by)/�]T (2)

where D is the total water depth; u and v are the depth-averaged velocities in the x- and y-
directions, respectively; t is the time; g is the gravitational acceleration; � is the water density;
�ax and �ay are the surface stresses, �bx and �by are the bed friction stresses; Sox and Soy are
the bed slopes stresses, Sox =�b/�x , Soy =�b/�y, b is the bottom function; and f is the Coriolis
parameter. The bed friction stress in the x- and y-directions is calculated by Manning formulations:

�bx =−g
n2u

√
u2+v2

D1/3
, �by =−g

n2v
√
u2+v2

D1/3
(3)

respectively, where n denotes Manning’s roughness coefficient.
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We express the shallow water equations in quasi-linear form as follows:

Ut +A(U )Ux +B(U )Uy =H (4)

where

A(U )= �F
�U

=

⎛
⎜⎜⎝

0 1 0

c2−u2 2u 0

−uv v u

⎞
⎟⎟⎠ , B(U )= �G

�U
=

⎛
⎜⎜⎝

0 0 1

−uv v u

c2−v2 0 2v

⎞
⎟⎟⎠ (5)

and c=√
gD is the propagation speed of the shallow water wave. The eigenvalues of A and B are

�(A)=u+c,u,u−c, �(B)=v+c,v,v−c

respectively.

2.2. Description of the third-order WENO schemes

We solve the shallow water equations using the finite volume formulation. The computational
control volumes are unstructured triangle meshes.

Taking the triangle �0 as the control volume, let F=(F,G), we formulate the semi-discrete
finite volume scheme of Equations (1) as

d

dt

∫
�0

U d�=−
3∑

k=1

∫
Lk

F ·nk dl+
∫

�0

H d� (6)

where Lk(k=1,2,3) is the kth edge of triangle �0, nk is the outward unit normal of the Lk . The
mean value of U and H on the cell �0 is defined as

Ū0= 1

|�0|
∫

�0

U d�, H̄0= 1

|�0|
∫

�0

H d� (7)

The line integral in Equation (6) is discretized by a q-point Gaussian quadrature∫
Lk

F ·nk dl≈|Lk |
q∑
j=1

� jF(U (G j , t)) ·nk (8)

F(U (G j , t)) is replaced by a numerical flux F∗. Here, the simple Lax–Friedrich flux is used, which
is given by

F∗(U+
j ,U−

j ) ·n= 1
2 [(F(U−(G j , t))+F(U+(G j , t))) ·n−�(U+(G j , t)−U−(G j , t))] (9)

where � is taken as an upper bound for the absolute value of eigenvalues in the n direction for the
Jacobian matrices A(U ) and B(U ), and U−(G j , t) and U+(G j , t) are the values of U inside the
cell �0 and outside the cell �0 (inside the neighboring cell) at the Gaussian point G j .

We are constructing schemes up to third-order accuracy for reconstruction of U±(G j , t); the
two-point Gaussian quadrature is used, which has G1=�P1+(1−�)P2, G2=(1−�)P1+�P2,

�= 1
2 +

√
3
6 and �1=�2= 1

2 for the line with endpoints P1 and P2.
The present numerical schemes follow the ideas of the WENO schemes in the paper of Hu and

Shu [13]. In order to obtain higher-order accuracy in the WENO schemes on triangle cells when
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Figure 1. A typical stencil.

using the same set of the ENO stencils, first we need a quadratic polynomial reconstruction of p2,
which requires that it has the same cell average as U on triangle �0 and it matches the cell averages
of U on the nine neighbor cells of �0 in a least-squares sense (see Figure 1, let �i ,� j ,�k be its
three neighbors, and �ia,�ib, be the two neighbors (other than �0) of �i , and so on). Then we
need to construct several linear polynomials ps(x, y)(s=1,2, . . . ,9) whose weighted average will
give the same result as the quadratic reconstructions p2 at each quadrate point:

R(x, y)=
9∑

s=1
�s ps(x, y) (10)

R(xG, yG)= p2(xG, yG) (11)

where ps(x, y)(s=1,2, . . . ,9) are the linear polynomials in agreement with the cell average ofU on
the nine stencils: S1={�0,� j ,�k}, S2={�0,�k,�i }, S3={�0,�i ,� j }, S4={�0,�i ,�ia}, S5=
{�0,�i ,�ib}, S6={�0,� j ,� ja}, S7={�0,� j ,� jb}, S8={�0,�k,�ka}, S9={�0,�k,�kb}.

We can obtain 10 linear equations for the nine weights �s . R(x, y) as a linear polynomial has the
same order with quadratic polynomial p2 on every Gaussian point. In order to ensure stability near
shocks, we need non-negative weights, and grouping of polynomials is used to achieve positivity:

3∑
s=1

�̃s p̃s(x, y)=
9∑

s=1
�s ps(x, y) (12)

The resultant linear polynomial

R̃(x, y)=
3∑

s=1
�̃s p̃s(x, y) (13)

is identical to R(x, y) in (10) and in most cases the coefficients �̃s can be made non-negative.
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The last is to compute the smoothness indicators and the non-linear weights. In this paper, for
a polynomial p(x, y) with degree up to k, we select the following measurement for smoothness,
as defined in [13]:

IS= ∑
1�|�|�k

∫
�

|�||�|−1(D� p(x, y))2 dx dy (14)

where � is a multi-index and D is the derivative operator. The indices of smoothness are used
inside the final expressions for the weights:

�k = �k∑
� j

, �k = �k
(	+ I Sk)2

(15)

where �k is the kth coefficient in the linear combination of polynomials (i.e. the �̃k in (13)). 	
is a small positive constant used to avoid the denominator to become zero and is typically taken
as 10−6; and ISk are the so-called ‘smoothness indicators’, which measure the smoothness of the
polynomials. The non-linear weights �k would replace the linear weights �s to form the WENO
reconstruction.

With the numerical flux F∗, F(U ) is approximated by (9) to higher-order accuracy at Gaussian
points.

The semi-discrete scheme (6), expressed as

Ut = L(U )

is discretized in time by a TVD Runge–Kutta method [15], for example, the third-order version
given by

U (1) = Un+�t L(Un)

U (2) = 3
4U

n+ 1
4U

(1)+ 1
4�t L(U (1))

Un+1 = 1
3U

n+ 2
3U

(2)+ 2
3�t L(U (2))

(16)

2.3. Balance of the flux and the source terms

Here we adopt the ideas of Rogers et al. [14] about the balance of the flux and the source terms;
they presented an algebraic technique for balancing the flux gradients and the source terms in
finite volume schemes. The numerical imbalance is eradicated by reformulating the governing
matrix hyperbolic system of conservation laws in terms of deviations away from an unforced but
separately specified equilibrium state. Thus, balancing is achieved by the incorporation of this
extra physical information and bypasses conventional numerical treatments of the imbalance.

The vector of conserved variables U is given by

U =U eq+U ′ (17)

where U ′ is the deviation of U from the equilibrium or still water value such that �U eq/�t=0. In
fact, for still water values, the shallow water convenient properties 
=u=v=0, and

U eq=[h,0,0]T, U ′ =U−U eq=[
,uD,vD]T
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where 
 is the free surface elevation above the still water level h, and D=
+h is the total water
depth. The shallow water equations are transformed to

�U ′

�t
+ �[F(U )−F(U eq)]

�x
+ �[G(U )−G(U eq)]

�y
=H− �(F(U eq))

�x
− �(G(U eq))

�y
(18)

U ′
t +F ′(U )x +G ′(U )y =H ′ (19)

with

U ′ = [
,uD,vD]T, F ′ =[uD,u2D+g(
2+2h
)/2,uvD]T
G ′ = [vD,uvD,v2D+g(
2+2h
)/2]T
H ′ = [0,Df v−g
Sox +(�ax −�bx )/�,−Df u−g
Soy+(�ay−�by)/�]T

(20)

We can see that the Jacobian matrixes A′(U ) and B ′(U ) of (19) are the same as A(U ) and B(U )

of (1), and the discretization of Equations (19) is similar to that of (1).
The approach taken in the paper for some examples chosen is to use the still water level as the

datum h. It is perfectly reasonable to choose a fixed horizontal datum elsewhere and derive the
balanced hyperbolic equations using a stage-discharge approach.

3. NUMERICAL RESULTS

In this section, we perform numerical experiments to test the performance of the WENO schemes
for the two-dimensional shallow water equations on unstructured triangle meshes, and then we
used the methods to simulate tidal bore on an estuary with trumpet shape and Qiantang river.

In our numerical experiments, the surface stresses and the Coriolis are ignored; the gravitation
constant is taken as 9.8m/s2; Manning’s roughness coefficient n is taken as 0.0001 except for
the test of Qiantang river; the small positive constant in the WENO weight formula is taken as
	=10−6.

3.1. Test for the exact C-property

In this test case [16, 17], the bottom is defined as

b(x, y)=0.8exp(−50((x−0.5)2+(y−0.5)2)) x, y∈[0,1]
The initial water level is defined as D(x, y)=1−b(x, y), and the initial velocity is defined as zero.
The surface should remain flat. The terminal time is taken as t=0.1.

We take the still level h as h=1−b(x, y). In Table I, L1 and L∞ are the errors of water level
D and the discharge Du and Dv when the Courant–Friedrichs–Lewy (CFL) number is 0.3 and
0.6, respectively, l is the average length of the sides. There are meshes of 216, 884 and 16 804
unstructured triangle cells that correspond to l=0.1,0.05,0.015, respectively. We remark that l
here is only a rough indicator of the mesh size. The results obviously confirm the theoretical result
of the proposition basically. The accuracy is good.
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3.2. Test for the orders of accuracy

To check the numerical order of accuracy, we use the same test as in [16]. On the unit square
[0,1]×[0,1], we choose the bottom topography to be

b(x, y)=sin(2�x)+cos(2�y)

the initial data are given by

D(x, y,0)=10+esin(2�x) cos(2�y)

Du(x, y,0)=sin(cos(2�x))sin(2�y)

Dv(x, y,0)=cos(2�x)cos(sin(2�y))

We take the still level h as h=10−b(x, y). We compute up to time t=0.05 when there is no
shock in the solution, with periodic boundary conditions. We use structured and central axially

Table I. Accuracy for the stationary solution.

D Du Dv

l CFL L1 L∞ L1 L∞ L1 L∞

0.015 0.3 4.885E−15 2.817E−15 1.508E−14 1.169E−14 1.297E−14 9.465E−15
0.6 6.439E−15 3.973E−15 6.710E−14 6.707E−14 3.836E−14 3.835E−14

0.05 0.3 4.441E−16 3.552E−16 1.089E−15 8.492E−16 4.886E−16 4.816E−16
0.6 4.441E−16 4.423E−16 1.033E−15 9.403E−16 7.148E−16 6.654E−16

0.1 0.3 3.775E−15 1.685E−15 1.503E−14 6.258E−15 3.555E−15 1.863E−15
0.6 6.439E−15 2.733E−15 1.951E−14 7.759E−15 4.441E−15 2.184E−15

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. Meshes of the test for the orders of accuracy.
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Table II. L1 errors and numerical orders of accuracy for the order test.

D Du Dv

N L1 error Order L1 error Order L1 error Order

16 1.941E−1 3.311E−1 2.532E−1
32 3.252E−2 2.58 5.976E−2 2.47 4.216E−2 2.59
64 4.465E−3 2.86 8.435E−3 2.82 6.198E−3 2.77
128 5.864E−4 2.93 1.091E−3 2.95 8.274E−4 2.91
256 7.560E−5 2.96 1.387E−4 2.97 1.071E−4 2.95

symmetric triangle meshes as the periodic boundary conditions (see in Figure 2). The reference
solution is computed with the same scheme and 512 cells in the x direction, since the exact solution
is unknown.

In Table II, the L1 errors of water level D and the discharge Du and Dv are displayed when
the CFL number is 0.3, N is the cells’ number in the x direction. We can see that the third-order
accuracy is achieved for the finite volume WENO schemes.

3.3. A small perturbation of steady-state water

This is a classical example to show the capability of the proposed scheme for the perturbation of
the stationary state [10, 14]. The computational domain is [0,2]×[0,1], and the bottom topography
is given by the function

b(x, y)=0.8exp(−5(x−0.9)2−50(y−0.5)2) x, y∈[0,2]×[0,1]
The surface is initially given by

D(x, y)=
{
1−b(x, y)+0.01, 0.05�x�0.15

1−b(x, y) otherwise
, u(x, y,0)=v(x, y,0)=0

The absorbing extrapolation boundary conditions of the left and right boundaries are used, and the
reflection boundary condition is used for up and down solid wall boundaries.

We take the still level h as h=1−b(x, y). Figure 3 displays the right-going disturbance as it
propagates the hump on a mesh of 16 804 unstructured triangle cells and 8585 vertexes divided by
surface-water modeling system. The contours of the surface level D+b are presented at different
times. The results are in agreement with other results and indicate that our scheme can resolve the
complex small features of the flow very well.

3.4. Asymmetric break of dam

We consider the sudden break of a dam separating two basins with the surface level of 5m
(downstream) and 10m (upstream). The dam breaks asymmetrically at time t=0. We simulate
the test case until time t=7.2. The length of the breach is 75 and it starts at y=95. Reflection
boundary conditions are applied on all the edges of the domain. Figure 4 shows the description
of the test case. A mesh of unstructured triangle 17 658 cells with 8945 vertexes is used, and the
average length of the sides is 2.2.
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Figure 3. The contours of the surface level D+b of steady-state water. Thirty uniformly
spaced contour lines at time t=0.12 (top left), at time t=0.24 (top right), at time t=0.36

(bottom left), at time t=0.48 (bottom right).

Figure 4. The description of dam break.

The contours of the surface level and velocity vectors are shown in Figures 5 and 6. We can
see in the figures that the right moving flow propagates to the downstream up and down, and
rarefaction wave propagates to the upstream; two asymmetric spiral vortexes are formed on both
sides of the breach because of the great velocity and the reflection of the wave on the upper wall.
Our results are similar to other results presented in the literature greatly, e.g. [17–19].

3.5. Tidal bore of an estuary with trumpet shape

In this section, we present some results obtained on an estuary with trumpet shape of flat bottom.
Here we make a generalized stream channel whose shape is like a trumpet (Figure 7), which
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Figure 5. The contours of the surface level for dam break (25 levels from 4.0 to 9.6).
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Figure 6. Velocity vectors at time t=7.2 for dam break.

determines the formation of tidal bore. The total length is 300 km. The first 100 km length from
zero is the shrinkage of the trumpet with the greatest width 120 km at zero as downstream. The
next 200 km length is straight with the same width of 4 km. The flow is calculated on a mesh of
unstructured triangle 4060 cells and 2303 vertexes; the least scale of elements is about 0.5 km, and
the biggest scale is about 3 km. The initial velocity and the free surface elevation above the still
water level are set to be zero as the initial conditions. We take the depth of the still water level
as 10m and the simple harmonic wave with a tide range of 4m and periodic time of 12 h (like
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Figure 7. Shape and meshes of a trumpet estuary.

M2 component tide) as the periodic water boundary condition for downstream (east boundary).
The absorbing extrapolation boundary condition for upstream is used, and the reflection boundary
condition is used for solid wall boundary.

We calculate at three periodic intervals, and the total time is 36 h. When flow propagates to the
straight channel, the tidal bore is formed, which is caused by the shrinking open mouth, but not
clear. After cumulative 25 h, the tidal bore is very explicit. The surface level in three dimensions
is shown in Figure 8 from cumulative t=25 to 32h from top to bottom. In those figures, when the
tide comes into the straight channel, firstly, the water level rises greatly. The difference between
the left and right of the tidal is enlarged, the tidal bore is formed, and then the height of the tidal
bore is enlarged gradually until it is more than 4m. From t=28, the tidal bore is just like a wall,
which propagates to upstream, and the height of the wall increases until t=23, when the tidal bore
almost runs out of the channel. The figures describe the propagation of tidal bore to the upstream
with a speed of about 5m/s.

Figure 9 shows the distribution of water level with 360 data at x=0, 50, 100, 150, 200, 250,
and 300km, respectively. We note that the mean water level rises greatly. The shape of time series
changes from almost sinusoidal to a very asymmetrical shape with an almost abrupt increase
in water level. During the first 100 km, the amplitude of a simple harmonic wave (tidal range)
increased gradually, while decreased little by little when it propagates to upstream into the straight
channel, and the shape of the wave is distorted, and flood tide following the tidal bore duration
reduced continuously. Tidal bore has formed at x=150km; then the tidal bore height enlarges
continually until it is equal to the tidal range approximately.

3.6. Tidal bore of Qiantang river

The shape of the Qiantang river looks like a trumpet. The computational domain of the Qiantang
river is from Ganpu with 22 km width to Zhakou with 2 km width over a distance of 102 km, the
estuary has a dramatic decrease in width, and it amplifies the tidal range significantly. The seawater
from the east adjacent to East China Sea flows into Qiantang coastal at the inlet; the mouth is
wide, water has to surge more and more as its flow is constrained by the shape of the gulf, then it
forms a tidal bore; meanwhile, water from the Qiantang river makes the tidal stronger, as the outer
water and the inner water block each other. Seawater flows into the Qiantang river continuously
and another tidal bore is formed. In addition, the large scale of sand sediment and the higher bed
river at the mouth are favorable to tidal bore.
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Figure 8. The surface level of a trumpet estuary from t=25 to t=32 from top to bottom.

The calculated domain is from Ganpu to Cangqian in [6, 7, 9], where the tidal bore forms,
evolves and dissipates, and the tributary named Cao’e river is ignored in [6, 9]; Pan et al. [7]
generalized Cao’e river, while we keep it as its real shape.
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Figure 8. Continued.

There are isolated islands and shoals that outcrop over the water surface at ebb in the real bottom
topography. We made it smooth in order to assure no great gradient of the bottom to operate the
computation completely. The modified topography of bottom is shown in Figure 10.
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Figure 9. The distribution of the surface level with 360 data at x=0,50,100,150,200,250,300km,
respectively, for a trumpet estuary from top to bottom.
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Figure 9. Continued.

The initial velocity and the free surface elevation above the still water level are set to be zero as
the initial conditions. The reflection boundary condition is used for solid wall boundary. The water
boundary of the tributary named Cao’e river is considered as the wall boundary because of the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:611–630
DOI: 10.1002/fld



WEIGHTED ESSENTIAL NON-OSCILLATORY SCHEMES 627

-5.3

-5.3

-5.3

-5
.3

-3.8

-3.8

-3
.8

-3.8

-3.8

-3.8

-3
.8

-3.8

-3.
8

-3
.8-3

.8

-2.4

-2.4

-2
.4

-2
.4

-2
.4

-2.
4

-2.4

-2
.4

-2
.4

-2
.4

-0
.9

-0.9

-0
.9

-0.9

-0.9

-0.9

Ganpu

Yanguan

Zhakou

Qibao

Cangqian

Cao’e river mouth

*

*

*

*

*

*

Figure 10. The contours of modified bottom topography for Qiantang river.
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Figure 11. Shape and meshes of Qiantang river.

small influence and lack of observed data. The observed water level of upstream and downstream
is chosen as the water boundary condition, which was observed continuously during seven days on
22–28 October 2003. It was recorded at every hour by the stations. The timing observed free surface
elevation of Yanguan (see Figure 10) in the calculated region is used for testing the scheme later.

In the computation, a mesh of 13 201 unstructured triangle cells with 3333 vertexes (see
Figure 11) is used and the least scale of elements is about 100m; the biggest scale is about
400m. The Manning coefficient is 0.00001 for the flood tide and 0.002 for the ebb tide; the CFL
number is 0.3.

The initial velocity u,v and the free surface elevation 
 above the still water level are set to be
zero as the initial conditions. The results in the initial stage are affected by the initial conditions
and ignored; here initial 12 h result is discarded.

The water boundary conditions at Ganpu (downstream) and Zhakou (upstream) [20] are shown
in Figure 12; the label points of date mean the 0:00 on different days. We note that the mean
water level is about 1m at Ganpu and about 4m at Zhakou, and the max tidal range is about 7m
at Ganpu and only 1.5m at Zhakou during the 7 days.

As water flows inward, the rudimentary tidal bore is formed near Ganpu, and it becomes a
clear tidal bore near Yanguan. The channel is straight near Yanguan; the trend of the tidal bore
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Figure 12. Surface elevation boundary conditions at Ganpu and Zhakou.
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Figure 13. Computed and measured surface elevations at Yanguan.

near Yanguan becomes uniform gradually, and it is called as ‘a line-shaped tidal bore’. The
reflection of the tidal bore appears in many places especially at corners when the tidal bore is
stronger; this phenomenon is called as ‘returning tidal bore’; then the strength of the tidal bore is
slightly weakened, and the tidal range and the surface level fall down slowly near Daquekou. This
phenomenon is coincident with the observation.

Although only the wet point is calculated, the results are consistent with measurement results
approximately. The variance of water level at Yanguan can be calculated. In Figure 13, we compare
the computed and observed variances of the free surface elevation [20], and they are found to be
similar. In Figure 14, we show the computed flow velocity at Yanguan, the max velocity during
flood more than −3m/s, while ebb velocities are about 1.5m/s. At the arrival and falling of
the tidal bore, the velocity changed quickly; the phenomenon is similar to the result of Madsen
et al. [9] and Pan et al. [7].
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Figure 14. Computed velocity at Yanguan.

4. CONCLUDING REMARKS

In this paper, on the unstructured triangle mesh the WENO schemes are used to simulate the
two-dimensional shallow water equations. The balance of the flux and the source terms makes the
shallow water equations fit to the non-flat bottom problem. According to the tests of some typical
examples and the simulation of a tidal bore on an estuary with trumpet shape and Qiantang river,
the numerical results show that the WENO schemes can simulate the current flow accurately and
catch the stronger discontinuous in water wave, such as dam break and tidal bore.

The tidal bore on an estuary with trumpet shape is computed with the schemes. The formation,
development, propagation, and dissipation of Qiantang tidal bore are simulated successfully with
the schemes. We can know more details about tidal bore and forecast it for guiding us in the
planning and protection of Qiantang river.
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